a2 United States Patent

Calvo et al.

US009384101B2

US 9,384,101 B2
Jul. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54) WEB APPLICATION ARCHITECTURE

(75) Inventors: Ramire Calvo, Palo Alto, CA (US);
Onar Vikingstad, Sunnyvale, CA (US);
William Kakes, San Jose, CA (US);
Charles Everett Edwall, II1, Sunnyvale,
CA (US); Juan Camilo Pinzon, San
Francisco, CA (US); Megan Frost, San
Francisco, CA (US); Jae Woo Chang,
San Jose, CA (US); Mischa McLachlan,
San Francisco, CA (US); Everaldo
Coelho, Cupertino, CA (US)

(73) Assignee: Apple Inc., Cupertino, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 311 days.

(21) Appl. No.: 13/282,311

(22) Filed: Oct. 26, 2011
(65) Prior Publication Data
US 2013/0031462 Al Jan. 31, 2013

Related U.S. Application Data
(60) Provisional application No. 61/511,938, filed on Jul.

26, 2011.
(51) Int.CL
GOGF 11/14 (2006.01)
GOGF 11/07 (2006.01)
GOGF 9/46 (2006.01)
GOGF 9/54 (2006.01)
(52) US.CL
CPC ... GOGF 11/1482 (2013.01); GOGF 9/461

(2013.01); GOGF 9/545 (2013.01); GO6F
11/0745 (2013.01); GOGF 2209/541 (2013.01)

(58) Field of Classification Search
CPC ... GO6F 17/2247; GOG6F 17/24; GO6F 17/211;

GOG6F 17/3089; GO6F 17/30905; GO6F

11/1458; GOGF 11/1482; GOGF 11/0745;

GOG6F 9/545; GOGF 9/461

USPC ottt 715/234
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,609,146 Bl
8,051,143 B2
2001/0043235 Al
2002/0199187 Al
2006/0101336 Al

8/2003 Slotznick
112011 Pallamreddy et al.
11/2001 Bestet al.
12/2002 Gissin et al.
5/2006 Edwards et al.

2007/0128899 Al* 6/2007 Mayercccceoevvvuenee 439/152
2007/0277109 Al 112007 Chen et al.
2008/0313648 Al* 12/2008 Wangetal.ccccoeene. 719/315
2009/0183155 Al* 7/2009 Praitisccccoveenee. GOGF 9/468
718/100
(Continued)
OTHER PUBLICATIONS

“Background pages and background apps”, Feb. 18, 2011, Chrome
Web Store, Google, p. 3.*

(Continued)

Primary Examiner — Scott Baderman
Assistant Examiner — Seung Jung

(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

A web application architecture can use a wrapper application
to provide a virtual machine environment within a web
browser and web applications can run on the wrapper appli-
cation. The wrapper application can provide life cycle man-
agement for the web applications and provide other functions
such as log in and log out for all of the web applications in the
environment.

19 Claims, 21 Drawing Sheets

applications, within a single window of a web browser

| Wrapper application presents icons, representing available |—\/301

Wrapper application receives selection of one of the icons 303
(for afirst application)

Wrapper application launches first app (if not previously launched}

and makes the first app the front most app (and all other available 305

applications are not front most -- e.g., they are hidden completely or
partially obscured)

1st app receives and processes user inputs and interacts with web
server (e.g., calendar server or email server or contact/address I 307
book server, etc.) {1st app runnin

in an iframe inside the wrapper
application within the web

rowser's single window)

Regsive input to switch applications |—v309

Wrapper application presents, in response to input to switch, icons
of the available apps within the web browser’s single window ~ [~311
(optionally hide completely or partially cbscure the 1st app)

| Receive selection of another applicaticn (2nd app) |rvS13

app the front most app {other apps at least partially hidden

| Wrapper application launches 2nd app and makes the 2nd }N’
315

or obscured but still running with saved context)

calls apps to save data and terminate and logs out user

| Receive close or log-out input, in response, wrapper application |_V317

US 9,384,101 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0078708 Al
2011/0173602 Al

3/2011 Dokovski et al.
7/2011 Togami et al.

OTHER PUBLICATIONS

Joe Kissell, “Take Control of MobileMe”, Oct. 2010, TidBITS Pub-
lishing Inc., 2nd Edition, p. 9, 11, 12, 17-21, 38, 63,64,67,69, 76, 81,
101, 113, 121.*

Seth Ladd, “Introduction to Chrome Developer Tools, Part One”, Jun.
18, 2010, Google, p. 1-4.*

Michael Mahemoff, “Extensions, Packaged Apps, and Hosted Apps
in the Chrome Web Store”, Sep. 2010, Google, p. 1, 2.*

Boris Smus, “Chrome Extension for Thesixtyone”, Oct. 31, 2010, p.
1 '*

WesCole, “Contacts.app Crashing with MobileMe”, Jan. 18, 2011,
MacRumors.com, http://forums.macrumors.com/showthread.
php?t=1082289, p. 1.*

Andrew Wilson, Amping Up Chrome’s Background Feature, Feb. 23,
2011, Google, http://blog.chromium.org/2011/02/amping-up-
chromes-background-feature.html, p. 1.*

IIS Application Pool, Jan. 20, 2010, Microsoft, http://technet.
microsoft.com/en-us/library/cc735247(v=ws.10).aspx, p. 1-2.*

PCT International Search Report and Written Opinion of the Inter-
national Searching Authority for PCT/US2012/045736, mailed Oct.
24,2012.

“Chapter 17—Controlling It All with Web-Based Desktops” In:
Michael Miller: “Cloud Computing: Web-Based Applications That
Change the Way You Work and Collaborate Online”, Aug. 11, 2008,
Que, XP55040638, ISBN: 978-0-78-973803-5 pp. 235-243, the
whole document.

Joe Kissel: “Introduction, Chapters 1-7” In: “Take Control of
MobileMe, Second Edition”, Oct. 27, 2010, TidBITS Publishing,
Inc., XP55040845, pp. 8-76, p. 8-p. 21, p. 37-p. 39, p. 62-p. 76.
“Chapter 19—Things to Know About Using Start Page” In: Scott
Granneman: “Google Apps Deciphered: Compute in the Cloud to
Streamline Your Desktop”, Dec. 4, 2008, Prentice Hall,
XP55040639, ISBN: 978-0-13-700470-6, pp. 300-310, the whole
document.

“Chapter 8—iGoogle: Google Your Way” In: Nancy Conner:
“Google Apps: The Missing Manual”, May 27, 2008, O’Reilly
Media, Inc., XP55040643, ISBN: 978-0-59-651579-9, pp. 411-446,
the whole document.

Anonymous: “Tarantella Web-enabling Software, One World, One
Network, One Answer, An SCO Technical White Paper”, SCO Tech-
nical White Papers, Dec. 31, 1999, XP002251538, the whole docu-
ment.

PCT International Preliminary Report on Patentability for PCT/
US2012/045736 mailed Feb. 6, 2014.

* cited by examiner

U.S. Patent Jul. 5, 2016 Sheet 1 of 21 US 9,384,101 B2

101
/

Set of applications
. o ~ 103
(e.g., web services applications)

LAl]

Wrapper application (or VM-like 105
OS) running on web browser

T

Web browser ~ 107

l T 108
Preemptive multitasking OS ~—109
Data processing system hardware ~—110

FIG. 1

U.S. Patent Jul. 5, 2016 Sheet 2 of 21 US 9,384,101 B2

Launch main OS (e.q., preemptive, multitasking OS)
and execute main OS

l

Launch web browser; receive command in
web browser to use web services
(e.g., user enters icloud.com into URL
entry field of web browser)

l

Launch wrapper application (e.g., Cloud OS)
which runs on the web browser

l

Wrapper application presents login user
interface for web services (e.g., user ~— 207
name entry field and password entry field)

l

Wrapper application authenticates the user 209
in response to proper login data

l

Wrapper application presents icons, representing
available applications, within web browser’s
window (and optionally launches last used ~ 211
application and presents icon for switching
between applications)

~—201

i~ 203

i~ 205

FIG. 2

U.S. Patent Jul. 5, 2016 Sheet 3 of 21 US 9,384,101 B2

Wrapper application presents icons, representing available
applications, within a single window of a web browser

v

Wrapper application receives selection of one of the icons L 303
(for a first application)

v

Wrapper application launches first app (if not previously launched)

and makes the first app the front most app (and all other available L 305

applications are not front most -- e.g., they are hidden completely or
partially obscured)

v

1st app receives and processes user inputs and interacts with web

server (e.g., calendar server or email server or contact/address L _ 307

book server, etc.) (1st app running in an iframe inside the wrapper
application within the web browser’s single window)

!

Receive input to switch applications ~— 309

v

Wrapper application presents, in response to input to switch, icons
of the available apps within the web browser’s single window |~311
(optionally hide completely or partially obscure the 1st app)

v

Receive selection of another application (2nd app) ~—313

v

Wrapper application launches 2nd app and makes the 2nd
app the front most app (other apps at least partially hidden ~—315
or obscured but still running with saved context)

!

Receive close or log-out input, in response, wrapper application
calls apps to save data and terminate and logs out user

FIG. 3

~—301

~ 317

U.S. Patent

Jul. 5, 2016 Sheet 4 of 21

US 9,384,101 B2

Wrapper application launches an app
(e.g., “Cloud OS: main () on the app”)

~—401

l

App informs (through call to wrapper application)

wrapper application that it is
ready (e.g., “App: applicationlsReady”)

~—403

l

Wrapper application informs app (through
call to app, such as
“Cloud OS: applicationWillBecomeActive”)
that it will be made front most

~—405

l

Wrapper application informs app it is now
front most (e.g., Cloud OS calls app with
call “applicationDidBecomeActive”)

~—407

'

Another app is selected by user or system

~—409

l

Wrapper application informs app it will be
moved to background
(e.g., “Cloud OS: applicationWillSuspend”)

~— 411

'

App placed in idle state; context and data saved

in memory and executable code of app still
loaded and operable

~413

FIG. 4

US 9,384,101 B2

Sheet 5 of 21

Jul. §5,2016

U.S. Patent

awel|
ur dde moys :SQpNOID

1009 USYOLLNe uInja.

{pomssed ‘gjejdde} uiboj

=~ gase e~ T WsWAEs/ 1S0d SO0

9 |wiy xapul ddy una.

ddey 139 :SOPNOID (Y| uibo| Aejdsip :SOPNOD

S)9SSE JN.)S B

! W}y xepur SOPNO|D uinyal
1 |-
N e \.._.um_uo ||||||||||||||| _s uifo
A|
WO PNOJOIMMM 1IBS(
(woo-gnyjeybip-dde-|od) (Woo gnyenbip:mmm) (ddy/yD %8 spnoi)) (woogny|eybip yine)
JonIag ddy N9 lasmolg JonJag yiny
NP 615 \- /16 \ogig

US 9,384,101 B2

Sheet 6 of 21

Jul. §5,2016

U.S. Patent

N

Lo
(e]
Lo

N

o
)
o

p—_———

4 5501401 g¢ ol

puadsng
-piquoieoyidde :50pnojD
puno.Byoeq o
dde ejewiue :g0pno|D

puadsng
-|[Ipuoneoldde :gOpNoID

]e]S dANj0E Ul :dde
BAI0YBL08g
-piquonesijdde :SOPNOID

punoibalo} ojul

dde ajewiue :gOpPNoID

ajels ojp! ul :dde
BAIOYAI09g

-lIimuoneslidde :50pnojd

Apeaysjuoneoldde :dde

{e1ep dde NOSI} + $914009 UdY0] Line uinja.

000 UBYO] Uine + dnueis/ | 39 UMPNoiD

dde ay uo ()urew :3OpNoID
awel! ul
dde unJ pue peoj :lasmolg

4 vg ol4 wouy

aousnbag
puno.byoeg

aousnbag
dnueig

US 9,384,101 B2

Sheet 7 of 21

Jul. §5,2016

U.S. Patent

N~
o
Lo

—— i ———

’

2§ Ol

Y as-o1401

3]e1s 9ANe Ul ddy

9)e1s 9|p! Ul .ddy

pajleqisanbai :ypnojo

LOp Uil

BA0yBWoagpIquonedjdde

9Z10YINeaYpIgIasn :SOPN0ID

Beq + usyoLyine uinjal

3400d udNOLUYIne + zAX/ 1 39 HHPNOjD
(1zAxsenbay)y (ddy

4 g5 914 woiy

{p.mssed ‘qjojdde} uiboj
/Lism/dmas/ 1S0d :S02

In uiBo| Aedsip :SOPNOIO
puadsngpiquonedndde ;S0 pnoj

punoibydeq oI dde sjewiue :SOPNO|

-

JaAROYBWOdag|ImUOREd||dde :SOpnoj)

punciBalo} ojul dde sjewiue :3QpnojD

O

(&)

pusdsngiipuonesiidde :50pnojD

UONBZUOYNYSSOTPIIesn :SOPNOID

gousnbag
L0y

US 9,384,101 B2

Sheet 8 of 21

Jul. §5,2016

U.S. Patent

aweJyl dde asop2 :S0pNOIH

{e1e dde NOSI} + 914000 usX0[Yine uinjal

314009 UBYO| LINe + $80uslaeld/ | Nd IMPNoID

(/seouaJsjald/isenbay yo snouolyouAg :ddy
9)e1s djeuIwIg) Ul :ddy

9jeulus]
-lliMuonesijdde :gopnojD

4 05 914 woiy

T o —————————————————— — — —

aousnbag
ENIET]

U.S. Patent Jul. 5, 2016 Sheet 9 of 21 US 9,384,101 B2

Email
Server(s)

)
Calendar
Server(s)

601C~

603

Contacts
Server(s)

Network(s)
(e.g., Internet)

Client
608 —— 605
607~ Setup Login”"~ Device(s)
Service |
(e.g., Setup ./609
Login
Server) /vresponse
(authToken +
address)

FIG.6

U.S. Patent Jul. 5, 2016 Sheet 10 of 21 US 9,384,101 B2

Server(s) —— 703

Push notification

Web browser on client device F~—705

|

Wrapper application runningin | 707
web browser on client device
App running in an iframe of [709
the wrapper application

FIG. 7

U.S. Patent Jul. 5, 2016 Sheet 11 of 21 US 9,384,101 B2

82)3
Web Browser File " Edit Views History Bookmarks ...
— 805
807——fooo iCloud 39— |
l T [—————1— 806
808 —1— AR =
813 7 1814
809 // &) L N
I \
S TN (
801 810 811 g12 804 802

US 9,384,101 B2

Sheet 12 of 21

Jul. §5,2016

U.S. Patent

g8 'Ol

ml YoM |u mﬂu;n_;s_@ AI ._mncw_molu ﬁl Szl org)

)

6

_Aepsen))

)&=

€18
.Sw > (P o uis soed Auig poio! 3 a“
alejndod asmeN elpadiip oGn| noA sdepy a|Boog jooye siddy HEE . mom
ﬁ EEER) >du HO “ou| ajddy woopnoprmmmysdpy 9] +_
|~ 8 PO \ 000 mOw
7 / {
a08 908 108

US 9,384,101 B2

Sheet 13 of 21

Jul. §5,2016

U.S. Patent

SS€]0 S8
Ad T
suioH Aoewoidig
Kisnag xgpad malnay ubisaq
ANd |
LOON
n J
plei4 Aessiiyd
AV L
189908 qnio moig Eelle) elalg
sApvy yum younug | dmjoay) sonwouoblg |euoijound ssoi1
AV 0l
Aleuauig)3 yooigbuudg
isepjealg yld
AV 6
AV 8
Aepypig sAyjolog Jeyse3
Aepinjeg g1 Aepud /| Aepsiny] 9} Aepsaupepm G| fepsen] | Repuop g Repung z| | Aep-e

110Z 81 — ¢l sunp

[F) 051] e [avon ieam] Feq | ()

1B
=

A NIOAAL . A lepus|e)d - ‘ SJoEIUOD v A e v
4 /4)
% Aepson|
o ubis ub\ pnojDI s Jexied Alw
ateindod asmapN eipadijipy aqn| nojp sdepy s|boog jooyey ajddy w @O@
C 56005 a0) [2 oulaiddy JEPUBIEO#/OO phojor Mwy SANY [8] =+) nﬂ
- 8 Jepusjen-pnoj! 009 wom
106" 206

US 9,384,101 B2

Sheet 14 of 21

Jul. §5,2016

U.S. Patent

0l Ol

ml Yol |u @;n_;s_@ ﬁl Evcw_molu ml S}oBUOD

D

Bpsan| &”

|

Jansn e,

“Uoce 0 e 9

et

mebew] QN uoHO
logeN Auueq
sﬁg.._::s.x,_z; o1 A & Bumjey

‘wtong useynoe o dun g oy @
Aepuenso), COUEA 1IeH eupewIsOYy
~"EuE) 58w Jg A8 J0yse0 aup Guoe puers
UL 0} 349 94 3L Pk 5T UL J0 PUBLYY
‘edoan3 Weuanon 03 di Jno (94
WYSKE #zenBlpoy wip
+~sal]| S3ig2 SR00 3T e FIgR
1 1 U peysaiont oq piich WBNOG | Lor IH

uREISTRL B[] SUMEN
el 88} ooues #UoN SIunD
Buquaio 3ou
A0 00| 95801 BiCH juokel A) op maN > L
4112 DOVLIIO0 UBBG S8 UOFENIFSRLIOK 4
omensecy oy @ ne 6
WAZo¥ 10us #1810H Jabey DAN [>] oy @
~ LRI J9A PelD ows Aol 7] pead) SHIB et
pue ‘00aig 0 it 1no oy peqwbisnien | T 0P
Ad 009 pionug uegauysy yunr @
. i s o wel §
oy Bupgt s puB ‘uobeu) e dy ey o e e ® s B
WdZHe #3uBBiH RjaBuy
weaion “4om o4 U0 BUBBR 0 G o ok e [{
‘o000 .
pein #cb9 kroy g spuepipal 5 o) Joneg URSLYD Woll o !H!]u._sh_u:u © x0qu g
2injUBADE BUIEL 19A] &
jednyu e 1Ay P 2 saoq|en

710>

9 IO ubls serped Alwg

pnojol 2

aleindod asmaN elpadpjipy eqny nop sdepy 8jfoon jooyes ofddy g

C 36000 A) [P oul siddy

wWoo"pnojormmay/sdny 9] _ Hq.a

7 8

pnoi)!

Sor\ p

4001

Sl

| 600}
coa 800l

US 9,384,101 B2

Sheet 15 of 21

Jul. §5,2016

U.S. Patent

vig—>

08 L9l

uelsiyg

‘uoos dn Yoo sJo

U530 1573 o, oM. S0EI0 1530 o 5] SNE | Boe7

UONEDEA S}H0ARS INQ
60/7L1%0 1IleH sullews oy
Ja)snja sy} moy Buniselsiul s} BINGeN UolQ
2y} 4o safew Jo a|dnood & ale aiaH uyor
sabew| ejngaN volip
Aepiaisaj 12gaN Auueq
18y} swp uads pey oym Jasis Aw o) Bupyjey
sem | ABJ\ U1 3j0eq ¢ BIBO0ID Inoge eap] Auy
adoJng uloyynos o) duy ng oy ®
Kepiaisap OOUBA lIeH suLBlISOY
“"gjue) sem jey} Aley) Jo jseod ayj Buoje pueys|
2UO| B 0} Juas aY 3L P|o} }sn[BuI O puBky Y
adoJng uiayynos o3 duy AnQ 2y
‘WY §1:6 # zanBupoy wir
5308)| "Sal)Id [B)SE03 &)1 BULBY INOge
8]l Si} U pejseIsul &g p,noA JyBnoyl | uyor IH
UOIleAI9SBId A1 BULEN
"W 8E¢} 00UeA ZIIoN SNy

A0 }00| 95E8|d "[9I0H JuabBal AJI) YI0A MON

o Ok

Buiquo ooy @

U} Je PanUIUod Usaq SBY UOIRAISSal INOA m
uopemosoy oo @ lwed €
Wd 20w 1ews g 19)oH Jusbay DAN aayoy @
“Buryes Janu pailj uans K3y) pano| spIb sy
pue 'uabaiQ) o} duj 1o o1y yoeq 106 18nf apy SIapjo4
jaInjuanpe Buiyel Jaay A
‘Ind 00:9 #laneg uensuyd e &
aABY am Je} 0G BuO| 00} Usaq S| PUSYdaM ysell
Aep Jey) woly sjoys sjione) AL JO SUO S,813H "SI} JsII} aU) S1y1 BuiPas 0} preaoy Bupoo] Ajui AsH @.
10} Bunyes 1Al paiij uaas Aay) paaol siAB sy} pue ‘ucbei@ o} diy 1o ol yoeq job isnl apn) ¥ u aserd A o} m:.o:um.__n_ [] 2
: ' ! us
Nd Tk #sulbbiy eebuy ues
e fey ‘yoeaq ay) uo Buixejes awi) Jo sjof eds em syelq B
‘asn03 JO Buizeute sem epuoj4 o} duy g °
A seyep & ofesinoy z sjuaidival g o) Jeneg UensLyg Wold S010Ud UOREIEA xoqul ﬂ
jaanjuaApe Buiyed JaAry NdzsL #uosieq euuy
! ;) o MOIA LOINS SeXqIEn
7 < d @ m C (2IesS 49)

N ublg Joied Awg pnojol 9
ateindod asmaN elpadisjipy 2gn] nop sdejy 916009 jooye) o|ddy

(C siboog) a) (D “ou| sddy _~ |lBwigwod pnojdrmmamysdpy [Pl 4

Gl ~—I'eN

coop) 808

508~/

i
908 -~

{

US 9,384,101 B2

Sheet 16 of 21

Jul. §5,2016

U.S. Patent

1021 —]

£

ZaARYD IUCL

IAleD) 0olUg

eiop(e i3

2

syooug eipues

1% 2ndt

sajou
alelig pieulag
IYouelg Bljo
p16l 1z Joqueides Aepupiq IOLIEIS BLOS
(Iv) woo'sw@DAelieg) 1BYD Aueg yeg
025v6 VO 'plosuo] Aalleg sunsuyn
OAY O|BPUOAY |2l BWoy
fslieg paL
woo swWDAs|eqy om a
1610-656 (01.5) auoyd! UOYSY S4I
2910655 (01G) iom
paass|ddy suer
soyeadn) sapjuuds wzd v
Aajieg palL) @ so‘_mmmdL
.
S0R0Y Iy ~—
¥
InQ ubis Joyied Alwg P o mw —..@
aJendod asmeN eipedisipy eqn) noj sdejy o|60og) jooye, s|ddy
C 2jboo)) a%9) (@ oul 3iddy 1083000800 pnojor vy sy 9] +) [«(] 808
" 8 _— SPeoY \ :
508 - 908/ 108

US 9,384,101 B2

Sheet 17 of 21

Jul. §5,2016

U.S. Patent

08 /

€l Ol

A Lolgint_ogvgint €zl It 9L-0) I £ It Z9zunt_Gz-6Lune | gr-ziunr [11-G une v-pz A | v E
Ad 9
a
Nd G
opmg
N MmaInIB|
Ad ¥
opng
malnay
Ad €
olpnig opnig
Molnoy| SSEIQ 89
ANd 2
BlIOH foewoydig
Kisnljaq x3pe4 mainay ubisag
Ad |
Uuoo
” Y N
pielq fossuyo AY L)
133208 iy mois 2040 BlAIS
skpy ynm younig Ji dnyoays s,oiwouobig |euopoung sso1n
AV 0L
Arejusws|3 yoouqBuudg
sepealg vld
AV 6
AV 8
Aepyuig sAyjolog Jojse3
fepinies g} Replid 2| AepsinyL 9L Aepsoupam Gl Repson] v Repuow ¢ fiepung z| | Aep-iie
Ly ¢ -
1051~ 110¢ 8l — ¢l aunf
[s | seap | wuon [yeem] feq | [(© suonennus 7] [siepusreo)
.V rw |0 ublg Jovied Awg ﬂlv P mvw
aJeindod asmap eipadifiay agn) noj sdepy sjfoon) jooyeA ojddy
C sj6005) a) [0U| Blddy ~ {BpUB[EO#/WI0D pRojoIrmmmy/sdny @] 4 _ mE. wow
~ 8 — {epusien \ 000

US 9,384,101 B2

Sheet 18 of 21

Jul. §5,2016

U.S. Patent

08 /

vl Ol

0¥~

i . eIbo0D 110z O EIep Qe _

RIS

Q@ 01d yoogae s.Aiwu3

ofe sjnuiw | pejepdn

obie aynuiw | pajepdn
O aid yoogoey s A3

poepdn =
ped sAiw3y |

T

P

T A C Rt

R

-~

o

1%

pslepdn
v suoyd! sAjw3
s901A9q Al |
no ubis 1e%ed Awg P m _\w
aleindod asmepN epadiyipy agn] nop sdep ojfoox) jooye, sjddy
(5boon 40) [211 2100y \ pulz/wod pnopravawsdny B1_+) (< Erll
s B ~— duoydi AN puiy 000 wOw

US 9,384,101 B2

Sheet 19 of 21

Jul. §5,2016

U.S. Patent

Gl Ol

e

NV Z2:0L 0102 ‘6 1shBny
Anqeureysng

Y 1101 0HOZ "0} 1snbny
HNg uelemeH

WV G0iL 0L0T ‘L1 1snBny
diysiequsiy VsV

INd 115 0102 P isnBny
Kressun) eysely

WV £Z:LL 0102 ‘G 1snbny
Aynqeureysng

= L

AYYHIANILI VHSY TV

Qavd0100
311n8 318340

3\ r
C o) N

.:4.:
»\\F.\a)

===}

=\

INd g0:1 0L0Z ‘0 i1snBny
s1amold s Az

AV 0S:01} 0LOZ “1€ ¥snBny
unws pegqoy

ALIIEYNIVISNS

=) =

48NS NYIIVAM\VYH

NOLYIDOSSY
ONITIVS NYOIaAY

SINIWIONVHHY
TvHOTd S.ATING

#4

\"\\EI

WS H3qoy

/w,i

WY 110} 010T 'L€ 1snbny

Nd 2201 0L0Z ‘9 tequisidag

INd 106 010T ‘g Jequusides

Wd gl:2 010T ‘g Jequisides

Nd §0:1 Aepoy

Sla—¢l8

115 1ndl

yoday nabualag opelojo) an[) JYseA ajes) uspjon |oARI] euLep 4S
00Y¥0102 JogJeH Woes
IEo|_,m$w 3L VA _ 8N10 1HOVA 3170 N3A109 = BUME 48 8L} NOGY
—_— S TR =
= =0 | (EEd
v e T s ()
_— - w"ePn o B 0 = | [}
@ [siequny | sebeq | ejoukey |
IO ubig soied Aiw3
aleindod asmeN elpadpiip egnl nop sdely 8foos jooyes eiddy =
C 3]6005) Q) [Oul 21ddy -~ Y 10Mi/W 00" projol mmmy/:sdny [B] +_ [«] wow
|~ 8 — o { 000

08—’

903~

{
L08

US 9,384,101 B2

Sheet 20 of 21

Jul. §5,2016

U.S. Patent

91 Ol

0691
(leuondo) 089}
(o1 "l “14IM (019 ‘pieoghey
‘yoojenig “6°s) 104U0D 0291 099}
(s)1on1808UB1] 40803 ‘QIN “6-9) so1neq Aejdsig 9 (jeuondo)
SSo[aUIM (s)eomnaq O/l Jsjjonuo) Aejdsig 3¥00Q
069} sng
0¥91 —
(NDd ‘lowapy 0897 529 0col
yse|4 ‘eauq pieH “69) Aiowap A|ddng Jamod eﬂwmmmemmm_m_w_oom %)
Alowa|\ 9|11e|OAUON ISAS DUl d

0191
(leuondo) ayoe9

U.S. Patent Jul. 5, 2016 Sheet 21 of 21 US 9,384,101 B2

Application 1 | Application 2
Service 1API Service 2API 1] | Service 2API 2
Service 1 Service 2
OS API1 | 0S API2
Operating System (OS)
1800
/
API-Calling Component(s)
1830
API Calls, Return Values,
Parameters Parameters

Application Programming
Interface
1820

API-Implementing Component(s)
1810

FIG. 18

US 9,384,101 B2

1
WEB APPLICATION ARCHITECTURE

This application claims the benefit of U.S. Provisional
Patent Application No. 61/511,938, filed Jul. 26, 2011, and
this provisional patent application is hereby incorporated
herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates to web applications and in
particular to web applications which can provide such ser-
vices as email services or calendar services or contact ser-
vices, etc., through the use of a web browser on a client device
which interacts with one or more web servers to provide the
particular web service.

Web application systems in the prior art allow a user to
access and interact with their email through a web browser.
For example, web email allows a user to see and interact with
their email through the use of a standard web browser rather
than an email client. For example, email systems maintained
on Microsoft’s Exchange Server allow a user to access their
email, calendar, and contacts through a web browser on any
machine which can be connected to a network, so that the use
of Entourage or Microsoft Outlook is not necessary to access
email, etc. Internet service providers, such as Comcast, and
Internet search providers, such as Google and Yahoo, also
allow access to a user’s email and other services through a
conventional web browser.

SUMMARY OF THE DESCRIPTION

Various embodiments of a web application architecture are
described herein. In one embodiment, a web application
architecture includes a wrapper application which is config-
ured to run on a standard web browser which itself runs on an
operating system of a data processing system. A set of appli-
cations are configured to run on the wrapper application (for
example, each application runs inside an iframe of the wrap-
per application), and each of the applications in the set of
applications is configured to provide data to and from one or
more web servers. The one or more web servers can store
email data, calendar data, contact data, and other types of
data. The wrapper application is configured to provide life
cycle management for each application in the set of applica-
tions and can provide for switching between applications in
the set of applications. The wrapper application can be con-
sidered a virtual-machine-like operating system which is run-
ning on the web browser which itself is running on another
operating system, such as a preemptive multitasking operat-
ing system. In one embodiment, the set of applications can
include an email application, and a calendar application, and
a contact or address book application. In one embodiment,
when each application in the set is presented, itis presented as
the front most application with the other applications com-
pletely hidden or at least partially obscured, depending on the
embodiment. In one embodiment, each of the applications,
when presented, is presented within the same single web
browser window which is provided by the web browser. In
one embodiment, calls are transferred, through one or more
Application Programming Interfaces (APIs), between the
wrapper application and each application in the set of appli-
cations. These calls can be transferred when each of the
applications is launched and when each of the applications is
switched between being front most and not front most. The
life cycle management provided by the wrapper application
can include the launching and quitting of each application in
the set of applications. Moreover, the wrapper application can

15

25

30

40

45

55

2

transfer calls between the wrapper application and the web
browser in order to support the running of each of the appli-
cations in the set of applications. In one embodiment, each
application in the set of applications remains executing when
it is not in the front most state (e.g., it is hidden completely or
partially or suspended as described herein). In one embodi-
ment, the wrapper application can present a set of icons, each
icon representing an application in the set of applications, in
response to a call from the web browser and the set of icons
can form a palette of available applications to select or switch
to.

In one embodiment, a method according to the present
invention can include executing a first operating system,
executing a web browser on the first operating system,
executing a wrapper application on the web browser, and
executing at least one application on the wrapper application.
The wrapper application an provide life cycle management
for the at east one application which can be part of a set of
applications, such as an email application, a calendar appli-
cation, a contact or address book application, etc. In one
embodiment, the method can also include transferring at least
one call, through an API, between the wrapper application
and each application in the set of applications when each
application is running or launching or terminating. Further,
the method can also include transferring at least one call
between the web browser and the wrapper application when,
for example, the first application is launched. The transferring
of at least one call can be one of issuing, initiating, invoking,
or receiving a call or software message through an API.

At least in some embodiments, a machine readable non-
transitory storage medium containing executable program-
ming instructions can be used to implement the methods
described herein. Also, data processing systems can be con-
figured to operate as described herein, and these data process-
ing systems can include desktop computers, laptop comput-
ers, tablet systems, smart phones, embedded devices, and
other electronic devices such as other consumer electronic
devices.

Other features of the present invention will be apparent
from the accompanying drawings and from the detailed
description which follows.

The above summary does not include an exhaustive list of
all aspects of the present invention. It is contemplated that the
invention includes all systems and methods that can be prac-
ticed from all suitable combinations various aspects summa-
rized above, and also those disclosed in the Detailed Descrip-
tion below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not limitation, in the figures of the accompanying drawings in
which like references indicate similar elements.

FIG. 1 shows an example of a software architecture for web
applications.

FIG. 2 shows an example of a method, in flowchart form,
according to one embodiment of the present invention.

FIG. 3 is a flowchart illustrating the method according to
one embodiment of the present invention.

FIG. 4 is another flowchart showing an embodiment of the
present invention.

FIGS. 5A-5D show another flowchart illustrating an
embodiment of the present invention.

FIG. 6 shows an example of a plurality of systems inter-
connected through one or more networks to provide web
services to one or more client devices coupled through the one
or more networks to the one or more servers.

US 9,384,101 B2

3

FIG. 7 shows an example of a method for implementing
push notification in one or more embodiments of the present
invention.

FIG. 8A shows an example of graphical user interface of
one embodiment which can be used to select one or more web
applications;

FIG. 8B shows another example of a graphical user inter-
face which can be used to select one or more web applica-
tions.

FIG. 9 shows another example of a graphical user interface
which can be used to select one or more web applications.

FIG. 10 shows another example of a graphical user inter-
face which can be used to select one or more web applica-
tions.

FIG. 11 shows an example of a graphical user interface for
an email web application.

FIG. 12 shows an example of a graphical user interface for
a contact or address book web application.

FIG. 13 is an example of a graphical user interface for a
calendar web application.

FIG. 14 is an example of a graphical user interface for a
map or map assisted finding web application.

FIG. 15 is an example of a graphical user interface for
allowing access to user documents such as word processing
documents, presentation documents, and spreadsheet docu-
ments.

FIG. 16 shows, in block diagram form, an example of a data
processing system which can be used in various embodiments
of the present invention.

FIG. 17 shows an exemplary embodiment of a software
stack usable in some embodiments of the present invention.

FIG. 18 illustrates a block diagram of an exemplary API
architecture which is usable in some embodiments of the
invention.

DETAILED DESCRIPTION

Various embodiments and aspects of the inventions will be
described with reference to details discussed below, and the
accompanying drawings will illustrate the various embodi-
ments. The following description and drawings are illustra-
tive ofthe invention and are not to be construed as limiting the
invention Numerous specific details are described to provide
a thorough understanding of various embodiments of the
present invention. However, in certain instances, well-known
or conventional details are not described in order to provide a
concise discussion of embodiments of the present invention.

Reference in the specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or
characteristic described in conjunction with the embodiment
can be included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification do not necessarily all refer to
the same embodiment. The processes depicted in the figures
that follow are performed by processing logic that comprises
hardware (e.g. circuitry, dedicated logic, etc.), software, or a
combination of both. Although the processes are described
below in terms of some sequential operations, it should be
appreciated that some of the operations described may be
performed in a different order. Moreover, some operations
may be performed in parallel rather than sequentially.

A web application architecture can utilize a wrapper appli-
cation which can provide a virtual-machine-like environment
or operating system running on a web browser. A set of one or
more web applications, such as an email application or a
calendar application or a contacts application or another
application can run on top of the wrapper application which

5

10

15

20

25

30

35

40

45

50

55

60

65

4

can provide life cycle management for each of the applica-
tions in the set of applications. The wrapper application can
allow for each of the applications to continue to execute after
they are launched while switching between applications in
the set of applications, and this can all be performed within a
single web browser window. The wrapper application can
provide for a single log in point to authenticate a user for all
of the web applications in the set of applications, and the
wrapper application can provide for automatic log out in all of
the launched web applications once a log out (or expiration of
an authentication time period) has occurred in one applica-
tion. This environment created through this architecture can
provide a better user interface for a user because, for example,
fewer windows need to be opened and the state and context of
each executing web application can be maintained as a user
switches between applications without having to open up
multiple windows or multiple tabs in a single web browser
window. This environment can also allow for notification
(e.g., push notifications) to be provided for hidden applica-
tions and can allow for application errors to be isolated and
recoverable without effecting other applications.

FIG. 1 shows an example of a web application architecture
which has the software stack shown in FIG. 1. In this archi-
tecture 101, a set of applications 103 operates through one or
more APIs 104 with a wrapper application 105 which runs on
the web browser 107 through one or more APIs 106. The web
browser 107 in turn runs through one or more APIs 108 on a
preemptive multitasking operating system 109 in one
embodiment; in another embodiment, the multitasking oper-
ating system may be replaced by other known operating sys-
tems which are not preemptive or not multitasking. All the
software shown in the software stack of FIG. 1 operates on a
data processing system, and in particular on the hardware of
the data processing system 110.

The set of applications 103 can be web applications or web
services applications, such as web email applications, web
calendar applications, web contact or address book applica-
tions, web document applications (e.g., access to 1Work docu-
ments), map applications such as applications for navigation
or applications for finding a device, such as finding a smart
phone, and other applications which can be implemented as a
web application through a web browser which is in commu-
nication with one or more web servers to exchange data
between the web application and the one or more web servers.
The user data, such as emails, calendar data, contact data, etc.
can be stored on one or more web servers and can be accessed
and used through a web browser on a client device. Examples
of'user interfaces for various web applications are provided in
FIGS. 11-15 and are described further below. These applica-
tions in the set of applications can operate on one or client
devices, such as the client device 605 shown in FIG. 6 which
can have the data processing system hardware 110, and a
client device can have the architecture shown in FIG. 16 and
can be a desktop computer or a laptop computer or a tablet
system or a smart phone, or a gaming device such as a game
console or other consumer electronic devices. The one or
more APIs 104 can provide a variety of calls for functions or
operations between the set of applications 103 and the wrap-
per application 105. FIGS. 4 and SA-5D provide examples of
such APIs and the calls for such APIs, and further background
information in connection with APIs is provided in conjunc-
tion with FIGS. 17 and 18. It will be understood that the term
transfer or transferring in connection with a call or API
includes one of issuing or initiating or invoking or receiving a
call or software message through the API. In one embodi-
ment, each of the applications in the set of applications can be
written in part or entirely in JavaScript, and in one embodi-

US 9,384,101 B2

5

ment, each of the applications can execute, in one embodi-
ment, inside an iframe which runs in the wrapper application
105 which itself can be written at least in part in JavaScript
and which runs on the web browser 107.

The wrapper application 105 can provide, in one embodi-
ment, a virtual machine environment for the set of applica-
tions 103 and can run on the web browser 107 and can transfer
calls between the wrapper application on and the web browser
through the API 106. FIGS. 5A-5D provides some examples
of calls through the AP1106. In one embodiment, the wrapper
application owns the URL text entry field in the web browser
and uses calls to the web browser to control the URL field and
uses calls to the web browser to control the title bar; for
example, the wrapper application can, through calls between
the wrapper application and the web browser, change the
name in the title bar to reflect the currently front most appli-
cation. Examples of how the wrapper application controls the
name in the title bar are shown in FIGS. 11 through 15. The
wrapper application can provide for life cycle management
for each application in the set of applications. In one embodi-
ment, this can include launching and quitting each of the
applications. Furthermore, the wrapper application can pro-
vide other features and functions and operations including
switching between applications, and handling errors of an
application (e.g., tearing down a misbehaving or crashed
application and offering to relaunch the application for a
user). Further, in one embodiment the wrapper application
can force a shutdown of an inactive or crashed or badly
behaving application. Further, the wrapper application can
also provide a single log in and single log out point for the user
and for all the applications in the set of applications. In one
embodiment, the wrapper application may not include certain
features of a traditional operating system, such as a kernel,
and memory handling, and scheduling of the operations of
processes and threads, although in another embodiment, the
wrapper application may include these functions or features
or a portion of these functions or features of a traditional
operating system.

In one embodiment, the wrapper application can also pro-
vide for push notification to one or more of the web applica-
tions in the set of applications 103, and can, in one embodi-
ment, allow a push notification to be presented for an
application which is not front most through a user interface on
the application which is front most in the set of applications
103. In one embodiment, the wrapper application and the set
of applications 103 operate in a memory space which is
defined by the memory space of the web browser and operate
within a thread or process which is defined by the web brows-
er’s window in which the wrapper application and the set of
applications 103 are running.

Web browser 107 can be a conventional web browser, such
as Internet Explorer from Microsoft, or Safari from Apple Inc.
of Cupertino, Calif., or Firefox, or Opera, or other known web
browsers. A web browser is a software application program
that processes a web page encoded in a markup language,
such as HTML; the web page is retrieved by the web browser
through one or more URLs (Uniform Resource Locator). The
web browser in one embodiment is configured to process,
using a layout engine in the web browser, the markup lan-
guage of the web page into a DOM (document object model)
of the web page, and further the web browser can be config-
ured to process a cascading style sheet associated with the
web page to present the web page. In one embodiment, the
web browser 107 can use one or more APIs 108 to interact
with the operating system 109, and these APIs can support
calls to the operating system for windowing and networking
functions, such as TCP/IP, etc. as is known in the art.

20

25

40

45

50

6

FIG. 2 shows an example of a method which can be used
with the software architecture shown in FIG. 1. In operation
201, the main operating system, such as operating system 109
is launched and executes on the data processing system 110
which can be, for example, the one or more client devices
shown in FIG. 6 and can have the architecture shown in FIG.
16, which is described below. Next, in operation 203 a web
browser can be launched to cause the web browser to execute
on the main operating system; the web browser can be the
web browser 107 executing on the operating system 109
shown in FIG. 1. A user can operate the web browser as is
known in the art to visit web pages, see TV shows or movies
or check sports events and scores or check weather or stocks
orother uses of a conventional web browser as is known in the
art. In addition, the user can decide to use a web service such
as web mail or other web services described herein. This can
be done by directing the web browser to a particular URL
which is an entry point for one or more web services as
described herein. For example, in one embodiment, the user
may enter the text “icloud.com” into the URL entry field of
the web browser 107. In response to the entry of this com-
mand, such as the icloud.com URL, the wrapper application
105 is launched and runs on the web browser 107, this is
shown as operation 205 in FIG. 2. It is assumed, in the flow of
FIG. 2, that the wrapper application and the set of applications
103 which run on the application have already been installed
on the data processing system; for example, the user has
previously used these web applications and they have been
downloaded as described in conjunction with FIGS. 5A-5D
and have been cached in the web browser’s caches. As noted
herein, the wrapper application and each of the applications in
the set of applications 103 can be written in JavaScript. After
the wrapper application is launched in operation 205, the
wrapper application presents, in operation 207 a log in win-
dow or user interface in the web browser’s window; the user
can then enter the log in data required by the system, such as,
for example, a user name and a user password. Then, the
system, in the manner described in conjunction with FIGS.
5A-5D, authenticates the user using, for example, a setup
service, such as the setup service 607 shown in FIG. 6. In
operation 209 the wrapper application will authenticate, in
one embodiment, the user for all applications which execute
in the set of applications 103 through the single log in process
and will do so in response to proper log in data entered by the
user or by the system on behalf of the user. In addition, in one
embodiment, the wrapper application provides an automatic
log out when, for example, the web browser’s window in
which the wrapper application and the setup applications are
executing is closed. In operation 211, after authentication the
wrapper application can present, in one embodiment, icons
representing the available applications, which are the appli-
cations in the set of applications 103 which are available to the
authenticated user. In one embodiment this can include an
email application, a contacts or address book application, a
calendar application, and other applications or web applica-
tions described herein or are known in the art. The wrapper
application, in operation 211, presents the icons within the
web browser’s window, and the user can select one of the
icons to cause the corresponding application in the set of
applications 103 to launch and thereby execute. Optionally,
the wrapper application can launch the last used application
in the set of applications 103 and can additionally present an
icon which can be used for switching between applications as
is described further below.

While FIG. 2 shows a method which can be used to get the
software stack shown in FIG. 1 to be up and running, FIG. 3
shows a method in one embodiment for the use of that soft-

US 9,384,101 B2

7

ware stack, which includes switching between the applica-
tions in the set of applications 103 which are, in one embodi-
ment, each executing in an iframe within the wrapper
application 105 which itself runs on web browser 107. In
operation 301, the wrapper application, such as wrapper
application 105 presents icons, representing available appli-
cations in the set of applications 103, in a user interface within
a single window of a web browser. An example of such a user
interface is shown in FIG. 8 A and in FIG. 8B. Alternative user
interfaces presenting such icons is also shown in FIGS. 9 and
10. When a user selects one of those icons, this will cause the
corresponding application in the set of applications 103 to
launch if not previously launched and will cause that appli-
cation to be front most. For example, in operation 303, the
wrapper application receives a selection of one of the icons
which is referred to as the first application in operation 103.
The selection may be from a user positioning a cursor on the
icon or the use tapping on the icon with the user’s finger or
other inputs known in the art. In response to this selection in
operation 305, the wrapper application launches the first app
or application if not previously launched and makes that first
app the front most app or application. All other available
applications that are not front most are either completely
hidden or partially obscured depending upon the implemen-
tation of the user interface. In the examples shown in FIGS. 11
through 15, the other available applications which are not
front most are completely hidden and the user can return or
switch to those by selecting an icon or other command. In one
embodiment, that icon can be referred to as a switcher icon
such as the icon 813 shown in FIGS. 8A and 8B as well as
FIGS. 11 through 15. The selection of that icon will cause the
presentation of the set of icons shown in FIG. 8A or 8B, or
each icon represents the set of available applications for the
authenticated user. After the first app or application has been
made front most, the user can then interact with it. This is
shown in operation 307 in which the first app receives and
processes user inputs and interacts with one or more web
servers, such as a calendar server or email server or a contact/
address book server, etc.

FIG. 6 shows examples of such web servers which can
interact with one or more client devices. It will be understood
that the user at one point in time can be using one client
device, such as the user’s client device at the user’s office and
be using, at another point in time, another client device, such
as a computer at home for the user, and in each case a con-
ventional or standard web browser can be used with a web
application to access the data and to interact with the data
stored on the one or more web servers, such as those shown in
FIG. 6.

In one embodiment, as shown in operation 307, the first app
is running within an iframe inside the wrapper application
105 which itself is running within the web browser’s single
window which is provided by web browser 107. At any point
in time during the use of the first app, the user can decide to
switch to one of the other available apps in the set of appli-
cations 103, and this is shown in operation 309 in which the
web browser receives in one embodiment the input to switch
applications. For example, the web browser can receive an
input to the switcher icon 813 and can pass through a call that
input to the first app which in turn calls the wrapper applica-
tion 105 which then presents the icons as in operation 301
described above. For example, the set oficons again represent
the available set of applications and can be presented in a user
interface as shown FIG. 8A or 813 or in the alternative user
interface shown in FIG. 9 or the alternative user interface
shown in FIG. 10. As shown in operation 311, the wrapper
application can present, in response to the input to switch

10

15

20

25

30

35

40

45

50

55

60

65

8

received in operation 309, the icons of the available applica-
tions within the same web browser’s single window that
previously displayed the first app. In other words, the method
of FIG. 3 can use the same single web browser window. In one
embodiment, the wrapper application causes the complete
hiding of the first app when the icons are presented after
selection of the switcher icon. For example, if the first app is
an email application as shown in FIG. 11 and if the user
selects the switcher icon 813, this causes the presentation of
the set of icons shown in FIG. 8A and the email application
1101 is no longer presented within the web browser’s single
window and it has been completely hidden from view while
the set of icons is presented. FIG. 9 shows an alternative user
interface in which the previously used application continues
to be presented while the set of icons used to switch between
applications or select applications is displayed in a region in
the web browser’s window which can be referred to as a
drawer region; similarly, FIG. 10 shows an example of a user
interface where the previously used application, such as the
first app in the method of FIG. 3, continues to be presented
behind the set of icons which are used to select or switch
between applications in the set of applications 103. In opera-
tion 313, the system receives a selection of another applica-
tion which may be referred to as the second app, which is one
of'the applications in the set of applications 103. In response
to this selection, the wrapper application launches the second
app (if not previously launched) and makes the second app the
front most app. Further, the wrapper application will cause all
other executing applications to be at least partially hidden or
obscured, however, those other applications can, in one
embodiment, still remain executing with a saved context and
data. So, for example, if a user was entering contact data for
a new personal contact and decided, while entering that data
to switch to the calendar application or the email application,
that new data and the context of that data will remain saved
while it is hidden at least partially and those hidden applica-
tions continue to execute with the saved context and data,
including the context of the text input focus and position of
the last input as well as the user data entered. In one embodi-
ment, this may extend even to modal dialogue boxes pre-
sented within the last executed application such that the state
of'those modal dialogue boxes is retained while the applica-
tion is not front most within the same single web browser
window. Also in operation 315, the set of icons presented by
operation 311 will also be removed so that the user, in one
embodiment, sees only the second application or second app
while the other apps are at least partially hidden.

An example of operations 311, 313, and 315 will now be
provided while referring to FIGS. 8B, 11, and 12. Operation
311 can, in one embodiment, present the user interface shown
in FIG. 8B which presents the icons for a set of applications
103 which are available to the authenticated user. The presen-
tation of those icons can occur by selecting the switcher icon
813. It will be assumed that the user was previously using the
email web application 1101 as shown in FIG. 11 and decided
to switch to the contact web application in the set of applica-
tions 103. This can be performed by selecting the switcher
icon 813. In an alternative embodiment, this could be per-
formed by selecting the set of available applications in the set
of applications 103 through a pull-down menu or other menu
or other user interface known in the art. The selection of the
switcher icon 813 causes the presentation of the icons shown
in FIG. 8 after the user had been previously using the email
application 1101. Then the user can select the contacts icon
shown in FIG. 8B to cause the presentation of the user inter-
face ofthe contacts application 1201 shown in FIG. 12 which,
in the context of operation 315, is the second app which is

US 9,384,101 B2

9

launched by wrapper application 105. At this point the user
can close the web browser window by selecting a close com-
mand or selecting the close button 807 shown in FIG. 8B.
Alternatively, the user can decide to log out or sign out by
selecting the signout button 814 shown in FIG. 8B. In
response, in operation 317, the wrapper application will cause
each executing application to save its data and will then
terminate and tear down each launched application and will
log out the user for each launched application. In this way, the
wrapper application provides a single point for the user to
deal with all of the launched applications and to terminate all
launched applications and log out of the web services for each
of'those web applications. In this particular embodiment, this
simplifies the user interface and the user’s interaction with the
variety of web services as it does not require the user to log out
of each individual web service.

While the method shown in FIG. 3 shows the use of two
applications in the set of applications 103, it will be appreci-
ated that more applications can be launched and used concur-
rently and all, in one embodiment, being presented within the
same web browser window, without a tab interface, and each
of which executes as an iframe or in an iframe within the
wrapper application which is running on the web browser in
the same web browser window. In one embodiment, the
memory space of that web browser window is also allocated
to the wrapper application and each application in the set of
applications 103 which are restricted to run within that
memory space allocated to that particular web browser win-
dow.

FIG. 4 shows an example of a method in which particular
calls are transferred between one or more applications in the
set of applications 103 and the wrapper application 105; these
calls can be through one or more APIs 104 which have been
described herein. A detailed example of a particular API is
also provided in the first appendix and the second appendix
included herein. The calls shown and described in FIG. 4 are
also shown in FIGS. 5A-5D, and in particular, are shown
within startup sequence 503 and background sequence 505 in
FIG. 5B. In particular, the method shown in FIG. 4 shows
some of the calls performed in the startup sequence and
background sequence in one embodiment of an implementa-
tion according to the flowchart shown in FIGS. 5A-5D. In
operation 401, the wrapper application launches an applica-
tion by making the call shown in operation 401 of FIG. 4. This
call in turn causes the JavaScript of the selected application to
be executed, in one embodiment, within an iframe of the
wrapper application which is itself running on the web
browser, such as web browser 107. The launched app will, in
this embodiment, inform the wrapper application through a
call to the wrapper application that the app is ready; operation
403 in FIG. 4 shows an example of such a call. Then in
operation 405, the wrapper application informs the app that it
will be made front most; an example of such a call is shown in
operation 405 of FIG. 4. In one embodiment, the app will
remain in an idle state as shown within startup sequence 503
until operation 407 in which the wrapper application informs
the app that it is now front most by, for example, the call from
the wrapper application to the app as shown within operation
407 of FIG. 4. At this point, the user can interact with the app
which is now front most. For example, if the app is an email
app, such as email app 1101 shown in FIG. 11, then the user
can read emails, reply to emails, forward emails, create new
emails, create new folders for emails, vie emails in folders,
etc. While in the process of using the email application 1101,
the user may decide to view the user’s calendar or the user’s
address book, etc., which may cause the user to select another
app as in operation 409. In one embodiment, this can be

10

15

20

25

30

35

40

45

50

55

60

65

10

performed by selecting the switcher icon 813 or by selecting
another app or application from a menu of applications in a
pull-down menu or other menu structure or other user inter-
face known in the art. This will cause, as described in con-
junction with operations 313 and 315 the other application to
be launched if it was not previously launched. Moreover,
operations 401, 403, 405, and 407 can be repeated for the
another application which was selected in operation 409.
Meanwhile, wrapper application 105 can in operation 411,
inform the app previously launched and executed that it will
be moved to the background, and an example of such a call is
provided in operation 411 shown in FIG. 4. The background
state can be fully or partially hidden. The implementation
shown in conjunction with FIGS. 8B and 11 through 15
involve an embodiment in which the background applications
are completely hidden while the front most application
appears to occupy most if not all of the web browser’s win-
dow. Operation 413 shows that any application which is
placed in the idle state by being moved to the background will
continue to be loaded and operable and its executable code
and the context and data associated with the executable code
of'the app is still in memory which can be the memory space
specified by the web browser as described herein. This can
allow a user to switch between applications hosted by difter-
ent web servers in different domains without having to save
state or log in or log out while switching between each of the
applications hosted on the different web servers. This can
allow an application to communicate with possibly multiple
services on different hosts or web servers. For example, a
calendar web application in the set 103 can communicate
with a calendar web server but can, in one embodiment, also
concurrently communicate with a contacts web server to
auto-complete invitees to a calendar event using the user’s
address book on the contacts web server. In one embodiment,
this can be achieved by the wrapper application 105 guaran-
teeing that any application in the set of applications will have
a user who is authenticated until any one of the web servers
indicates otherwise as a response to any request. In one
embodiment, if an application receives a response from a web
server claiming that the credentials or authentication data are
invalid, an application should flush local data and caches and
inform the wrapper application that the user is no longer
authenticated, in which case the wrapper application in one
embodiment can log the user out for all applications in the set
of applications, thereby requiring the user to reenter authen-
tication information, such as a user name and password.
The flowchart of FIGS. 5A-5D shows the interaction
between a client device running a web browser 517, which
can be the web browser 107 of FIG. 1 and several other
systems such as one or more web servers. In particular,
authentication server 515 can be the setup service 607 shown
in FIG. 6 and the app server 521 can be any one of the web
servers 601A or 601B or 601C shown in FIG. 6. The content
distribution network 519 can be part of the set of servers 601
or be a separate service or web server which is configured to
provide the content of the wrapper application software and
the applications in the set of applications 103 which run on the
wrapper application 105. It will be understood that the appli-
cation server 521 is, for example, an email server providing
the web mail for the email application 1101 shown in FIG. 11
or alternatively the application server 521 can be a web server
providing data for the contact application 1201 shown in FI1G.
12, etc. Hence, application server 521 can be the email server
601A in FIG. 6 or can be the calendar server 601 shown in
FIG. 6 or the contact server 601B shown in FIG. 6 or other
web servers that interact with a web application. The method
shown in FIGS. 5A-5D can begin with the user inputting the

US 9,384,101 B2

11

URL www.icloud.com, or another URL, into the URL text
entry field in the web browser 517 which can be the web
browser 107 shown in FIG. 1. If the set of applications and the
wrapper application have not been previously cached in the
web browser’s cache, then as shown in FIG. 5A, one or more
GET requests can be performed by the browser requesting the
set of applications and the wrapper application which are
returned to the browser as shown in FIG. 5A. The wrapper
application as shown in FIG. 5A shows a log in user interface,
and in response to a proper authenticated log in, the user can
then obtain the set of applications after obtaining the wrapper
application in response to the first GET request. After the user
presents valid authentication or log in data, then the browser
517 communicates with the authentication server 515 which
can be the setup server 607 shown in FIG. 6. In particular,
referring to FIG. 6, the client device 605 communicates
through one or more networks, such as the Internet 603 with
the setup service 607 by providing the log in information
which caninclude the user name and password. Inresponse to
the valid log in information, the setup server 607 sends back
an authentication token which can be in the form of one or
more cookies (which can be marked as SSL. and HTTP—only
so JavaScript cannot see them) and one or more addresses of
the appropriate email servers and other servers which the web
applications 103 use; the addresses in one embodiment can be
referred to as a “bag” as shown in FIGS. 5A and 5C. After
receiving data from the appropriate web server, an application
in the set 103 presents its user interface (e.g., in the case of an
email application in the set of applications 103, the email app
1101 as shown in FIG. 11 is shown within the web browser’s
window). This completes the log in process shown in log in
sequence 501 of FIG. 5A. The downloaded applications and
downloaded wrapper application can in one embodiment be
maintained within the web browser’s caches so that they do
not need to be repeatedly downloaded whenever the browser
is relaunched or whenever the main operating system is
relaunched or restarted, etc. In another embodiment, the
wrapper application and each of the applications in the set of
applications 103 can be downloaded upon each user log in.

FIGS. 5A-5D show an example of particular calls between
a wrapper application, referred to “cloud OS” in FIGS.
5A-5D and the one or more applications in the set of appli-
cations 103. FIGS. 5A-5D also show calls (e.g. “Cloudkit:
GET/startup . . . ” shown in FIG. 5B) made with an API that
can be referred to as a Cloudkit API and this API provides a
software framework for the set of applications. An example of
a particular API for the cloud OS wrapper application is
provided in the first appendix. An example of a particular API
for the Cloudkit API is provided in the second appendix.
FIGS. 5A-5D also illustrate operations or calls performed by
the app and the web browser. FIGS. 5C-5D also provides
examples of calls and operations which occur in a 401
sequence, shown as sequence 507 and in terminate sequence
509.

FIG. 6 shows an example of one or more web servers which
can operate with one or more client devices through one or
more networks while using the web application architecture
described herein. The set of applications 103 along with the
wrapper application 105 and the web browser 107 can be
executing on a client device 605 which is coupled to the one
or more networks 603 to in turn communicate with one or
more web servers, such as web servers 601A, 601B, or 601C
or other web servers not shown (such as map or navigation
servers or iWork document servers or web servers for other
web applications). The client device can be coupled to each of
these web servers at the same time while each of their corre-
sponding apps are executing as described herein. A set of the

10

15

20

25

30

35

40

45

50

55

60

12

web servers, such as the web servers shown in FIG. 6, can be
in different domains (e.g. one domain for email servers, such
as icloudemail.com, and another domain for calendar servers,
such as icloudcalendar.com); for web browsers, such as Safari
and Firefox, that support CORS (Cross-Origin Resource
Sharing), CORS can be used for cross domain requests. For
other web browsers, an iframe can be used to proxy XHRs
(XML HTTP Request) which communicate with the parent
web browser window via postMessage. The setup service 607
can be one or more setup servers 607 which can act in the
manner shown in conjunction with authentication server 515
shown in FIGS. 5A-5D.

FIG. 7 illustrates an example of how push notification can
be used to transmit a notification from one or more web
servers to a particular application running in an iframe of the
wrapper application 105. The push notification can begin by
any one of the web servers, such as the email server 601 or a
calendar service 601B or the contact server 601C, providing
a notification to the web browser 705 on the client device,
such as client device 605. The web browser can communicate
through a call, such as through the API 106, to the wrapper
application, such as wrapper application 105 which is running
in the web browser on the client device. The wrapper appli-
cation can then provide the notification to the app which
interacts with the appropriate web server which sent the push
notification as shown in 709.

FIG. 8A shows an example of a user interface on a display
device 801 according to one embodiment of the present
invention. Display device 801 can be the display 1670 of FIG.
16 which can be part of the data processing system hardware
110. The user interface can be created by the software stack
shown in FIG. 1. It will be appreciated that other windows not
shown FIG. 8 A may also be displayed on a display device 801
within the desktop 802 as is known in the art. The user
interface can include a menu bar 803 which is shown at the top
of'the screen of the display device 801; it will be understood
that alternative locations of the menu bar may be used such as
at the bottom of the screen or within each window, such as
window 804. The example shown in FIG. 8A resembles the
user interface of the Macintosh operating system known as
Mac OS X in which the menu bar 803 is at the top of the
screen. A web browser is currently executing, which can be
web browser 107 which executes on the operating system 109
which can be, in one embodiment, the Macintosh operating
system; alternatively, other operating systems can be used
such as Windows, etc. The web browser is presenting a web
browser window 804 in which the wrapper application 105
and the set of applications 103 can be executing. The web
browser window 804 includes URL text entry field 806 and a
title bar 805 which includes a title which, in one embodiment,
is owned or controlled by wrapper application 105 as
described herein. The web browser window 804 also includes
a close button 807 and back and forward buttons 808 and 809.
The back and forward buttons 808 and 809 can be conven-
tional back and forward buttons used in a web browser. The
web browser window 804 also displays a switcher icon 813
and a log out icon 814 which can be used as described herein.
The user interface presented by the web browser window 804
includes a set of icons which each represent one of the appli-
cations in the set of applications 103. For example, the icon
810 can represent the mail or email application which is in the
set of applications 103, and the icon 811 can represent the
contacts application within the set of applications 103, and
the icon 812 can represent the calendar application within the
set of applications 103 etc. When the user selects one of those
icons, the wrapper application 105 will then cause the launch-

US 9,384,101 B2

13

ing (if not previously launched) of the selected application
which corresponds to the selected icon as described herein.

FIGS. 11 through 15 provide examples of specific applica-
tions or web applications which are in the set of applications
103. In particular, FIG. 11 shows an email application as
indicated by the word “mail” in the title bar 805. As previ-
ously described, the wrapper application through a set of calls
with the web browser (e.g., through the API 106) controls the
title bar 805 and can provide the proper title for the current
front most application. FIG. 12 shows an example of the user
interface of the contacts or address book application which is
partofthe set of applications 103 in one embodiment. FIG. 13
shows an example of the user interface of a calendar applica-
tion which is one of the applications in the set of applications
103 in one embodiment.

FIG. 14 shows an example of a map application which can
be used to find the device, such as a smart phone, and which
can be one of the applications in the set of applications 103
according to one embodiment. FIG. 15 is an example ofa user
interface to allow the user to access and/or interact with a
collection of documents, such as presentation documents,
word processing documents, and spreadsheets; in particular,
document application 1501 allows the user to interact with
documents stored by the user on one or more web servers.

FIG. 16 is a block diagram illustrating an exemplary data
processing system, such as a computer system, which may be
used in some embodiments of the invention. It should be
understood that while FIG. 16 illustrates various components
of a computer system, it is not intended to represent any
particular architecture or manner of interconnecting the com-
ponents as such details are not germane to the present inven-
tion. It will be appreciated that other data processing systems
such as other computer systems that have fewer components
or more components may also be used with the present inven-
tion.

As illustrated in FIG. 16, the system 1600, which is a form
of'a data processing system, includes the bus(es) 1650 which
is coupled with the processing system 1620, power supply
1625, memory 1630, and the nonvolatile memory 1640 (e.g.,
a hard drive, flash memory, Phase-Change Memory (PCM),
etc.). The bus(es) 1650 may be connected to each other
through various bridges, controllers, and/or adapters as is
well known in the rt. The processing system 1620 may
retrieve stored instruction(s) from the memory 1630 and/or
the nonvolatile memory 1640, and execute the instructions to
perform operations as described above. The bus 1650 inter-
connects the above components together and also intercon-
nects those components to the optional dock 1660, the display
controller & display device 1670, Input/Output devices 1680
(e.g., NIC (Network Interface Card), a cursor control (e.g.,
mouse, touch screen, touchpad, etc.), a keyboard, etc.), and
the optional wireless transceiver(s) 1690 (e.g., Bluetooth,
WiFi, Infrared, cellular telephone receiver etc.). The data
processing system 1600 may be a handheld computer, a per-
sonal digital assistant (PDA), a mobile telephone, a portable
gaming system, a portable media player, a tablet or a handheld
computing device which may include a mobile telephone, a
media player, and/or a gaming system or other type of con-
sumer electronic devices. As another example, the data pro-
cessing system 1600 may be a network computer or an
embedded processing device within another device.

One or more Application Programming Interfaces (APIs)
may be used in some embodiments. An API an interface
implemented by a program code component or hardware
component (hereinafter “API-implementing component™)
that allows a different program code component or hardware
component (hereinafter “API-calling component™) to access

10

15

20

25

30

35

40

45

50

55

60

65

14

and use one or more functions, methods, procedures, data
structures, classes, and/or other services provided by the API-
implementing component. An API can define one or more
parameters that are passed between the API-calling compo-
nent and the API-implementing component.

An API allows a developer of an API-calling component
(which may be a third party developer) to leverage specified
features provided by an API-implementing component. There
may be one API-calling component or there may be more than
one such component. An API can be a source code interface
that a computer system or program library provides in order to
support requests for services from an application. An operat-
ing system (OS) can have multiple APIs to allow applications
running on the OS to call one or more of those APIs, and a
service (such as a program library) can have multiple APIs to
allow an application that uses the service to call one or more
of'those APIs. An API can be specified in terms of a program-
ming language that can be interpreted or compiled when an
application is built.

In some embodiments the API-implementing component
may provide more than one API, each providing a different
view of or with different aspects that access different aspects
of the functionality implemented by the API-implementing
component. For example, one API of an API-implementing
component can pr vide a first set of functions and can be
exposed to third party developers, and another API of the
API-implementing component can be hidden (not exposed)
and provide a subset of the first set of functions and also
provide another set of functions, such as testing or debugging
functions which are not in the first set of functions. In other
embodiments the API-implementing component may itself
call one or more other components via an underlying APl and
thus be both an API-calling component and an API-imple-
menting component.

An API defines the language and parameters that API-
calling components use when accessing and using specified
features of the API-implementing component. For example,
an API-calling component accesses the specified features of
the API-implementing component through one or more API
calls or invocations (embodied for example by function or
method calls) exposed by the APl and passes data and control
information using parameters via the API calls or invocations.
The API-implementing component may return a value
through the API in response to an API call from an API-
calling component. While the API defines the syntax and
result of an API call (e.g., how to invoke the API call and what
the API call does), the API may not reveal how the API call
accomplishes the function specified by the API call. Various
API calls are transferred via the one or more application
programming interfaces between the calling (API-calling
component) and an API-implementing component. Transfer-
ring the API calls may include issuing, initiating, invoking,
calling, receiving, returning, or responding to the function
calls or messages; in other words, transferring can describe
actions by either of the API-calling component or the API-
implementing component. The function calls or other invo-
cations of the API may send or receive one or more param-
eters through a parameter list or other structure. A parameter
can be a constant, key, data structure, object, object class,
variable, data type, pointer, array, list or a pointer to a function
or method or another way to reference a data or other item to
be passed via the APIL.

Furthermore, data types or classes may be provided by the
API and implemented by the API-implementing component.
Thus, the API-calling component may declare variables, use
pointers to, use or instantiate constant values of such types or
classes by using definitions provided in the APIL.

US 9,384,101 B2

15

Generally, an API can be used to access a service or data
provided by the Al-implementing component or to initiate
performance of an operation or computation provided by the
API-implementing component. By way of example, the API-
implementing component and the API-calling component
may each be any one of an operating system, a library, a
device driver, an API, an application program, or other mod-
ule (t should be understood that the API-implementing com-
ponent and thr API-calling component may be the same or
different type of module from each other). API-implementing
components may in some cases be embodied at least in part in
firmware, microcode, or other hardware logic. In some
embodiments, an API may allow a client program to use the
services provided by a Software Development Kit (SDK)
library. In other embodiments an application or other client
program may use an API provided by an Application Frame-
work. In these embodiments the application or client program
may incorporate calls to functions or methods provided by the
SDK and provided by the API or use data types or objects
defined in the SDK and provided by the API. An Application
Framework may in these embodiments provide a main event
loop for a program that responds to various events defined by
the Framework. The API allows the application to specify the
events and the responses to the events using the Application
Framework. In some implementations, an API call can report
to an application the capabilities or state of a hardware device,
including those related to aspects such as input capabilities
and state, output capabilities and state, processing capability,
power state, storage capacity and state, communications
capability, etc., and the API may be implemented in part by
firmware, microcode, or other low level logic that executes in
part on the hardware component.

The API-calling component may be a local component
(i.e., on the same data processing system as the API-imple-
menting component) a component (i.e., on a different data
processing system from API-implementing component) that
communicates with the API-implementing component
through the API over a network. It should be understood that
an API-implementing component may also act as an API-
calling component (i.e., it may make API calls to an API
exposed by a different API-implementing component) and an
API-calling component may also act as an API-implementing
component by implementing an API that is exposed to a
different API-calling component.

The API may allow multiple API-calling components writ-
ten in different programming languages to communicate with
the API-implementing component (thus the API may include
features for translating calls and returns between the API-
implementing component and the API-calling component);
however the API may be implemented in terms of a specific
programming language. An API-calling component can, in
one embedment, call APIs from different providers such as a
set of APIs from an OS provider and another set of APIs from
a plug-in provider and another set of APIs from another
provider (e.g. the provider of a software library) or creator of
the another set of APIs.

FIG. 18 is a block diagram illustrating an exemplary API
architecture, which may be used in some embodiments of the
invention. As shown in FIG. 18, the API architecture 1800
includes the API-implementing component 1810 (e.g. an
operating system, a library, a device driver, an API, an appli-
cation program, software or other module) that implements
the AP11820. The API 1820 specifies one or more functions,
methods, classes, objects, protocols, data structures, formats
and/or other features of the API-implementing component
that may be used by the API-calling component 1830. The
API 1820 can specify at least one calling convention that

30

35

40

45

16

specifies how a function in the API-implementing component
receives parameters from the API-calling component and
how the function returns a result to the API-calling compo-
nent. The API-calling component 1830 (e.g., an operating
system, a library, a device driver, an API, an application
program, software or other module), makes API calls through
the API 1820 to access and use the features of the API-
implementing component 1810 that are specified by the API
1820. The API-implementing component 1810 may return a
value through the API 1820 to the API-calling component
1830 in response to an API call.

It will be appreciated that the API-implementing compo-
nent 1810 may include additional functions, methods,
classes, data structures, and/or other features that are not
specified through the API 1820 and are not available to the
API-calling component 1830. It should be understood that the
API-calling component 1830 may be on the same system as
the API-implementing component 1810 or may be located
remotely and accesses the API-implementing component
1810 using the API 1820 over a network. While FIG. 18
illustrates a single API-calling component 1830 interacting
with the API 1820, it should be understood that other API-
calling components, which may be written in different lan-
guages (or the same language) than the API-calling compo-
nent 1830, may use the API 1820.

The API-implementing component 1810, the API 1820,
and the API-calling component 1830 may be stored in a
machine-readable non-transitory storage medium, which
includes any mechanism for storing information in a form
readable by a machine (e.g., a computer or other data pro-
cessing system). For example, a machine-readable medium
includes magnetic disks, optical disks, random access
memory; read only memory, flash memory devices, etc. and
can be a local storage medium or a storage medium on a
remote device that is coupled to a client device by one or more
networks.

InFIG. 17 (“Software Stack™), an exemplary embodiment,
applications can make calls to Services 1 or 2 using several
Service APIs and to Operating System (OS) using several OS
APIs. Services 1 and 2 can make calls to OS using several OS
APIs.

Note that the Service 2 has two APIs, one of which (Service
2 API 1) receives calls from and returns values to Application
1 and the other (Service 2 API 2) receives calls from and
returns values to Application 2. Service 1 (which can be, for
example, a software library) makes calls to and receives
returned values from OS API 1, and Service 2 (which can be,
for example, a software library) makes calls to and receives
returned values from both OS API 1 and OS API Application
2 makes calls to and receives returned values from OS AP 2.

Reference in the specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes can be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense.

US 9,384,101 B2

17

What is claimed is:

1. A machine readable non-transitory storage medium con-
taining executable instructions which, when executed on a
data processing system, cause the data processing system to
perform operations comprising:

executing a first Operating System (OS);

executing a web browser on the first OS, wherein the web

browser processes a web page encoded in a mark-up
language;

executing a wrapper application on the web browser, the

wrapper application providing life cycle management
for at least a first application in a set of applications
executing in a same web browser window, and provides
for switching the first application from a front most state
to a not front most state, wherein the first application
remains in an executing state, with context and data
associated with the executable instructions of the first
application saved, after the first application is switched
to a not front most state, the context including a state of
text input focus, text input position, and user data
entered;

executing, on the wrapper application, the set of applica-

tions including at least the first application, each appli-
cation in the set of applications executing in a corre-
sponding frame of the web page, wherein the wrapper
application handles errors separately for each applica-
tion in the set of applications and allows restarting of the
first application while other applications in the set of
applications continue executing;

transferring at least one call between the wrapper applica-

tion and the first application when the first application is
launched for execution and at least one call between the
wrapper application and the first application when the
first application is terminated; and

transferring at least one call between the web browser and

the wrapper application when the first application is
launched.

2. The medium as in claim 1 wherein transferring at least
one call comprises one of issuing, initiating, invoking or
receiving a call or message, and wherein the first OS is a
preemptive, multitasking OS, and where a memory space of
the wrapper application is defined by the memory space of the
web browser, and wherein the web browser is a standard web
browser.

3. The medium as in claim 2 wherein the web page is
retrieved by the web browser through one or more URLs
(Uniform Resource Locator) and wherein the web browser is
configured to process, using a layout engine in the web
browser, the mark-up language of the web page into a DOM
(Document Object Model) of the web page and is configured
to process a cascading style sheet associated with the web
page to present the web page.

4. The medium as in claim 2 wherein a set of applications
execute on the wrapper application and the set includes the
first application which is an email application, a second appli-
cation which is a calendar application and a third application
which is a contacts or address book application and wherein
each application in the set is presented, when it is front most,
within the same single window of the web browser.

5. The medium as in claim 4 wherein the wrapper applica-
tion operates as an operating system for the set of applications
and each application in the set is written at least in part in
JavaScript.

6. The medium as in claim 4 wherein the corresponding
frame for each application in the set is an iframe and each
application presented as a front most application or not pre-
sented as the front most application through an action by the

40

45

50

18

wrapper application, and the wrapper application enables
push notifications to be provided for an application not pre-
sented as the front most application.

7. The medium as in claim 6 wherein the wrapper applica-
tion generates data for display of a set of icons, each icon in
the set of icons representing an application in the set of
applications, in response to a call from the web browser, the
call being caused by a selection of a first icon, in the same
single window in the web browser.

8. The medium as in claim 7 wherein the selection of the
first icon is used to switch between the applications and
causes presentation of the set of icons in the same single
window of the web browser.

9. The medium as in claim 8 wherein each application in
the set of applications remains in an executing state, with
context and data saved, after the application is switched from
the front most application to a not front most state.

10. The medium as in claim 9 wherein the same, single
window of the web browser does not include tabbed win-
dows, and wherein the wrapper application owns a URL text
entry field and a title bar of the same, single window of the
web browser.

11. The medium as in claim 9 wherein the wrapper appli-
cation authenticates a user for each application in the set of
applications and wherein when a user is logged out in one of
the applications in the set or access expires in one of the
applications in the set, then the wrapper application logs the
user out of remaining applications in the set of applications.

12. The medium as in claim 1 wherein the wrapper appli-
cation receives address information for web servers for each
of the applications in the set of applications in response to
transmitting proper user authentication data to a setup ser-
vice.

13. A machine readable non-transitory storage medium
containing executable instructions for execution by a data
processing system, the instructions comprising:

a wrapper application configured to run on a web browser
which runs on an operating system of the data process-
ing system, wherein the web browser is to process a web
page encoded in a mark-up language; and

a set of applications configured to run on the wrapper
application in a same web browser window, the set of
applications providing data from one or more web serv-
ers, wherein the wrapper application provides life cycle
management for each application in the set of applica-
tions, handles errors separately for each application in
the set of applications, allows restart of an application
while other applications in the set of applications con-
tinue executing, and provides for switching between the
applications in the set of applications, the switching to
cause an application to switch from a front most state to
anot front most state, wherein each application remains
in an executing state, with context and data associated
with the executable instructions of the application saved,
after the application is switched from a front most state
to a not front most state, the context including a state of
text input focus, text input position, and user data
entered.

14. The medium as in claim 13 wherein calls are transferred
between the wrapper application and each application when
the application is launched and when the application is
switched between front most and not front most, and wherein
life cycle management comprises launching and quitting of
each application in the set of applications.

15. The medium as in claim 14, wherein the wrapper appli-
cation and the set of applications are configured to execute in
a same, single web browser window, each application in the

US 9,384,101 B2

19

set of applications executes in a corresponding iframe of the
web page, each application in the set of applications remains
executing when in the not front most state and wherein the
wrapper application presents a set of icons, each icon repre-
senting an application in the set of applications, in response to
a call from the web browser, the call being caused by a
selection of a first icon in the same, single web browser
window, and the first icon being used to switch between the
applications in the set of applications.
16. A machine implemented method comprising:
executing a first Operating System (OS);
executing a web browser on the first OS, wherein the web
browser processes a web page encoded in a mark-up
language;
executing a wrapper application on the web browser, the
wrapper application providing life cycle management
for at least a first application in a set of applications
executing on a same web browser window, wherein the
wrapper application handles errors separately for each
application in the set of applications and allows restart-
ing of the first application while other applications in the
set of applications continue executing;
executing the set of applications on the wrapper applica-
tion, wherein each application in the set of applications
executes in a corresponding iframe of the web page, the
first application is presented as a front most application
or not presented as the front most application through an
action by the wrapper application, and wherein each
application in the set of applications remains in an
executing state, with context and data associated with
executable instructions of the application saved, after
the application is switched from the front most applica-
tion to a not front most state, the context including a state
of text input focus, text input position, and user data
entered;
transferring at least one call between the wrapper applica-
tion and the first application when the first application is
launched for execution and at least one call between the
wrapper application and the first application when the
first application is terminated; and
transferring at least one call between the web browser and
the wrapper application when the first application is
launched wherein transferring at least one call com-
prises one of issuing, initiating, invoking or receiving a
call or message, and wherein the first OS is a preemptive,
multitasking OS, and where a memory space of the
wrapper application is defined by the memory space of
the web browser; and wherein the web browser is a
software application program that processes a web page
encoded in a mark-up language, the web page retrieved
by the web browser through one or more URLs (Uni-
form Resource Locator) and wherein the web browser is
configured to process, using a layout engine in the web
browser, the mark-up language of the web page into a
DOM (Document Object Model) of the web page and is
configured to process a cascading style sheet associated
with the web page to present the web page.
17. The method as in claim 16 wherein a set of applications
execute in the wrapper application and the set includes the
first application which is an email application, a second appli-

10

15

20

25

30

35

45

50

55

20

cation which is a calendar application and a third application
which is a contacts or address book application and wherein
each application in the set is presented, when it is front most,
within the same single window of the web browser and
wherein the wrapper application operates as an operating
system for the set of applications and each application in the
set is written at least in part in JavaScript.

18. A data processing system comprising:

means for executing a first Operating System (OS);

means for executing a web browser on the first OS;

means for executing a wrapper application within memory
space defined by the memory space of the web browser,
the wrapper application providing life cycle manage-
ment for multiple applications in a set of applications
executing in a same web browser window, wherein the
wrapper application handles errors separately for each
application in the set of applications and allows restart-
ing of the first application while other applications in the
set of applications continue executing;

means for executing the set of applications on the wrapper

application, wherein the wrapper application and the set
of applications are configured to execute in a same,
single web page in the web browser, wherein each appli-
cation in the set executes in a corresponding iframe of
the web page, the corresponding iframe for each appli-
cation in the set presented as a front most application or
not presented as the front most application through an
action by the wrapper application, each application in
the set of applications remains in an executing state, with
context and data associated with executable instructions
ofthe application saved, after the application is switched
from the front most application to a not front most state,
and the context includes a state of text input focus, text
input position, and user data entered;

means for transferring at least one call between the wrap-

per application and a first application in the set of appli-
cations when the first application is launched for execu-
tion and at least one call between the wrapper
application and the first application when the first appli-
cation is terminated; and

means for transferring at least one call between the web

browser and the wrapper application when the first
application is launched.

19. The data processing system as in claim 18 wherein
transferring at least one call comprises one of issuing, initi-
ating, invoking or receiving a call or message, and wherein
the first OS is a preemptive, multitasking OS, and where a
memory space of the wrapper application is defined by the
memory space of the web browser and wherein the web
browser is a software application program that processes a
web page encoded in a mark-up language, the web page
retrieved by the web browser through one or more URLs
(Uniform Resource Locator) and wherein the web browser is
configured to process, using a layout engine in the web
browser, the mark-up language of the web page into a DOM
(Document Object Model) of the web page and is configured
to process a cascading style sheet associated with the web
page to present the web page.

#* #* #* #* #*

